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Asymptotic analysis of particle engulfmemt
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~Received 28 October 1998; revised manuscript received 6 June 1999!

An asymptotic analysis is conducted on the interaction between an insoluble spherical particle and an
advancing solid-liquid interface when the particle is in the near-contact region~gap thickness is much smaller
than the particle’s radius!. The analysis considers only thermal effects in a pure substance. The interface
equilibrium temperature includes the undercooling effects due to the front curvature and to the long-range
intermolecular forces in the thin melt film behind the particle. An expression for the crystal-particle gap
thickness is derived and used to calculate the threshold value for the front velocityVT which separates pushing
from engulfment.@S1063-651X~99!01211-8#

PACS number~s!: 64.70.Dv, 81.30.Fb, 81.05.Ni
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I. INTRODUCTION

It is well known that when a particle interacts with
solidifying interface, it is either pushed or engulfed in t
solid. Several experimental and theoretical studies have b
performed for the purpose of quantifying the pushing or
gulfment phenomenon@1–10#. These studies have demo
strated the existence of a critical value of the growth r
which separates pushing from engulfment. The depende
of this critical velocity on the physical and processing p
rameters has not been fully resolved and remains an in
sive area of research. We refer the reader to Ref.@8# for an
extensive review of the problem.

In this Brief Report, we allow one neutrally buoyant an
insoluble spherical particle to be near enough the interf
that the gap between the planar front and the nearest poin
the sphere is much smaller than the radius of the particle.
shall conduct a small-gap asymptotic analysis@11# for the
purpose of~i! determining the interface shape near the p
ticle in the near-contact region~Fig. 1!, whence determining
the dependence of the minimum gap on the physical par
eters and~ii ! using the gap to calculate the forces that act
the particle since the calculated inner field provides
dominant forces on the particle. These forces consist of
viscous drag force, which opposes the movement of the
ticle, and the Van der Waals force which pushes the part
away from the interface. By balancing these two forces,
obtain an expression for the growth rate which separa
pushing from engulfment.

II. MATHEMATICAL MODEL

We consider the directional solidification of a pure su
stance in such a way that the solidifying front is movi
vertically upward with velocityV. We assume that an ine
and neutrally buoyant spherical particle is located at a
tanceh* from the planar solid-liquid interface. The system
described by the heat conduction equations in the liquid
solid phases and in the particle with the assumption of m
conservation. We consider an axisymmetric geometry wit
moving cylindrical coordinate system which immobilizes t
solid-liquid interface. With the vertical coordinate denot
by z* and the radial coordinate, which is taken along t
PRE 601063-651X/99/60~5!/6180~4!/$15.00
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solid-liquid interface, byr * , the governing equations for th
dimensional variables~denoted by *) are

]T*

]t*
2V

]T*

]z*
5k

1

r *

]

]r *
S r *

]T*

]r *
D 1

]2T*

]z* 2
, ~1!

whereT* and k are the temperature and the thermal diff
sion coefficient in the liquid. Similar equations hold for th
temperatureTS* in the solid, withkS in place ofk, and for

FIG. 1. Sketch of the near-contact region. Top: A spherical p
ticle of radiusa positioned near the solid-liquid interface. Note th
deformation in the latter. This situation pertains to the casem.1.
Bottom: A magnification of the near-contact region shown in a b
in the top figure. The waviness~slightly exaggerated here! in the
solid front is of the order of the gap thickness.H is the depth of the
melt film in dimensionless form and the reference temperatureT0 is
measured at a distanceL from the particle-melt boundary (d5L
1H).
6180 © 1999 The American Physical Society
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PRE 60 6181BRIEF REPORTS
the temperatureTp* in the particle, withkP in place ofk, kS ,
and kP being the thermal diffusion coefficients of the sol
and particle, respectively.

At the particle-liquid boundary,z* 5h* 1a2Aa22r * 2

[B* (r * ), the continuity of the temperature and of the he
flux yield T* 5Tp* and“(kT* 2kpTp* )•n50, wherek and
kp are the thermal conductivities of the melt and the partic
respectively, n denotes the normal to the particle-me
boundary that is pointing into the liquid and“ is the gradient
vector. Furthermore, we will allowTp* to have some pre
scribed valueT0* at some elevationz* 5d* . If we neglect the
kinetic and hydrodynamic effects, the solid-liquid interfa
equilibrium temperature is given by~see Ref.@8#! T* 5TS*
5Tm1DTcurv1DTdp , whereDTcurv is the curvature under
cooling given by the Gibbs-Thomson formula,DTcurv
5@aV/DH f #K, wherea is the crystal-melt interface energy
DH f is the molar entropy of fusion,V denotes the mola
volume of the liquid phase~taken to be the same as the mo
volume in the solid phase!, andK is the mean curvature o
the interface. The undercooling termDTdp represents the
change in the melting temperature due to the Van der W
forces in the film separating the particle from the interfa
and is given by ~see Ref. @8#! DTdp
5@V/DH f #@A/6pg3(r * )#, where A is the Hamaker con-
stant andg(r * ) is the gap thickness, i.e., the depth of t
film melt that is sandwiched between the particle and
solid-liquid interface. Far away from the interface, the te
perature gradient in the solid phase is maintained atGS* .

When the particle enters the near-contact region, it
duces pressure variations in the melt film. These pres
changes owe their existence to the disjoining pressurePDP
and the pressure that is associated with the front curvatur
a result of the Gibbs-Thomson effectPGT. For a spherical
particle of radiusa, the pressure variation that is induced
the front deformation, at the origin, isPGT5aK5a/2a,
while the disjoining pressure is given byPDP5
2A/6pg3(r * ). Following Ref. @8#, we let l be the charac-
teristic length scale over which the disjoining pressurePDP
in the film balances the pressure due to the Gibbs-Thom
effect PGT, i.e, uAu/6p l 35a/2a, from which it follows that
l 5@auAu/3pa#1/3.

In the nondimensionalization of the equations and bou
ary conditions, we usel as lengthscale in the vertical direc
tion and the radius of the particlea, as a lengthscale in th
horizontal direction,l 2/k as a scale for time and the fusio
temperature of the pure substanceTm as a scale of tempera
ture. The following equations in dimensionless form are o
tained

]T

]t
2v

]T

]z
5qF e2

1

r

]

]r S r
]T

]r D1
]2T

]z2 G , ~2!

whereq51 in the liquid phase,q5kS /k in the solid phase,
and q5kP /k in the particle, and wheree5 l /a and v
5 lV/k.

The corresponding boundary conditions in dimensionl
form are discussed in the following. Since we are focus
on the liquid region that is sandwiched between the part
and the solid-liquid interface, the upper boundary for t
liquid region is given byez5(h* /a)112A12r 2, where
t
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h* is the distance between the planar interface and the n
est point on the particle, i.e., the minimum clearance betw
the particle and the solid front. The particle is assumed to
in the near-contact region so thath* !a. We let h* /a5eH
whereH5O(1). At this upper boundary, which we deno
by B(r ), the continuity of the heat flux and of the temper
ture imply “(T2mTp)•n50 and Tp5T, where m is the
ratio of the thermal conductivity of the particle to that of th
liquid (m5kp /k). In dimensionless form, the temperature
the interfacez5h(r ,t) satisfies

T5TS511
Ge

A11e2h r
2 Fh r

r
1

h rr

11e2h r
2G1bg23~r !, ~3!

whereh(r ,t) is the deviation of the interface from planarity
the subscriptr denotes differentiation with respect tor, and
G5aV/ lDH fTm , b5AV/6p l 3DH fTm . The parameterG
describes the influence of the front curvature andb charac-
terizes the effect of the pressure put forth by the Van
Waals forces. Note that a positive~negative! Hamaker con-
stant impliesb.0 (b,0).

An estimation of the order of magnitude of the vario
dimensionless parameters that appear in the equations
boundary conditions is now undertaken. Following Ref.@8#
we consider a typical physical situation withA510215 erg
(1 erg51027 J), a'50 erg/cm2, and particle radiusa
'1023 cm. Then the characteristic length scale isl'1027

cm which yields e'1024. For V'1024 cm/s, k
'1021 cm2/s, andV/DH fTm'331029 cm3/erg, we ob-
tain G'0.13,b'1.631024, andv'10210. Hence appropri-
ate scalings for the dimensionless parameters arev5e2v̂,
b5eb̂, and G5O(1) where the hat symbol denotesO(1)
quantities.

III. ANALYSIS

In this section we conduct an asymptotic analysis in
vicinity of the origin. For this purpose, we introduce th
stretched coordinater 5AeR, a scaling that is suggested b
the dimensionless location of the melt-particle boundary, i
ez5eH112A12r 2. The following system of equation
and boundary conditions results:

]T

]t
2e2v̂

]T

]z
5qF e

1

R

]

]R S R
]T

]RD1
]2T

]z2 G , ~4!

with similar equations in the solid phase and the particle. T
upper boundary is now given by

z5H1
R2

2
1e

R4

8
1•••5B~R!. ~5!

On z5B(R), the continuity of temperature and of the he
flux yields

]T

]z
2e

]B
]R

]T

]R
5mF]Tp

]z
2e

]B
]R

]Tp

]R G and T5Tp . ~6!

The temperature in the solid and liquid phases at the in
facez5h(R,t) is given by
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T5TS511
G

A11ehR
2 FhR

R
1

hRR

11ehR
2G1eb̂g23~R!.

~7!

We solve the steady-state version of the above problem
perturbation techniques usinge as the perturbation param
eter. In order to keep the interface planar in the basic s
tion, we let the thermal conductance ratiom deviate slightly
from 1. Recall thatm.1 corresponds to a particle that
more conducting than the melt whilem,1 corresponds to a
particle that is more insulating than the melt. Hence, we
m511em̂ wherem̂ is anO(1) quantity that could be eithe
positive or negative. This is done simply for the sake
simplifying the algebra. Form215O(1), one has tocon-
sider a perturbation about a nonplanar interface. Let

@T,TS ,Tp ,Z#5@ T̄,T̄S ,T̄p,0#1e@u,uS ,up ,h#1O~e2!.
~8!

Then theO(1) problem (e50) pertains to the case of

planar interface and is described byT̄(z)5(DT/d)z11, for

0<z<H1R2/2, T̄p5(DT/d)(z2d)1T0 , for H1R2/2<z

<d, and T̄S5GSz11, for z<0, whereDT5T021. Here
DT/d is simply the temperature gradient across a layer c
sisting of the liquid film and a portion of the particle. Th
particle’s presence does not affect the temperature pro
for two reasons:~i! at leading order the thermal conductiv
ties of the melt and particle are equal so that the heat fl
does not distinguish between melt and particle and~ii ! the
effect of the disjoining pressure does not appear atO(1) but
enters at the next order in the calculations, i.e.,O(e). Be-
cause the effect of the presence of the particle is not fe
the leading order of the calculations, the temperature pro
are all linear in the vertical coordinate. The ratio of the te
perature differenceDT over the depthd can be written as
DT/d5(DTp1DTm)/(L1H), whereH is the depth of the
melt layer under the particle,L5d2H, DTm , andDTp are
the dimensionless temperature changes over the depthH
and L, respectively~see Fig. 1!. In addition, theO(1) con-
tribution to the continuity of the heat flux at the particle-m
interface impliesDTp /L5DTm /H, which when combined
with the previous relation, yields an expression for the
rameterd, namely,d5H@11DTp /DTm#. Next we proceed
with the solutions to theO(e) contributions foru, uS , and
uP . These expressions are not displayed in this report.
heat energy balance at the solid-liquid interface implies

“@KTs2T#n5LFV1
]h

]t G , ~9!

whereK5kS /k denotes the ratio of the thermal conductivi
of the solid phase (kS) to that of the liquid phase (k), L is
the nondimensional latent heat of fusion,L5DH fk/kTm and
V is the dimensionless growth rate. The leading order term
the latter is calculated from Eq.~9! to get V5KGS2DT/d
5KGS2DTm /H. This expression for the dimensionle
growth velocity is similar to the one corresponding to t
directional solidification of a pure substance without parti
with DTm /H being the thermal gradient in the melt. Th
effect of the particle does not appear at this order of
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calculations. AtO(e) of Eq. ~9! we obtain an evolution
equation for the interface perturbationh(R,t), namely,

L]h

]t
52

DT

d
h1GFhRR1

hR

R G1m̂
DT

d S H2d1
R2

2 D
1b̂S H1

R2

2 D 23

. ~10!

If we make the change of variablex5RADT/Gd, then the
steady state solution of Eq.~10! that is bounded atx50 and
satisfies the symmetry condition atx50, i.e.,dh/dx(0)50,
is given by

h~x!5m̂FH2d1
2Gd

DT G1
m̂DT

2Gd
x2

1
b̂d

DT F E
x

` yK0~y!I 0~x!dy

@H1~Gd/2DT!y2#3

2E
0

x yI0~y!K0~x!dy

@H1~Gd/2DT!y2#3G , ~11!

whereI 0(x) andK0(x) are the modified Bessel functions o
order zero of the first and second kind, respectively. Eq
tion ~11! implies that

h~0!5m̂FH2d1
2Gd

DT G1
b̂d

DTE0

` yK0~y!dy

@H1~Gd/2DT!y2#3
,

~12!

which, with the conditiondh/dx(0)50, provides the initial
conditions that are needed to alternatively solve the ste
version of Eq.~10! for h(x) numerically. These calculation
are beyond the scope of this report. The knowledge of
gap thickness, namely,

g~x!5H1
Gd

2DT
x21eF S Gd

DTD 2 x4

8
2h~x!G , ~13!

allows the calculations of the forces acting on the particle
this report, we consider the simple case of using the
thickness at the origin to calculate the force balance on
particle. Thus, we are in fact ignoring the interface dist
tions. The inclusion of the latter will require the integratio
of Eq. ~11! and is beyond the scope of this Brief Report. T
gap thickness at the origin is given byg(0)5H2eh(0),
which, upon using Eq.~12! and the definition ofd, can be
written asg(0)5CH2F/H2, where

C5H 12em̂F12S 11
DTp

DTm
D S 12

2G

DTD G J , ~14!

F5
eb̂

DTm
E

0

` yK0~y!dy

@11~G/2DTm!y2#3
. ~15!

The minimum gap thickness at the origin is calculated
minimizing g(0) with respect toH. We find thatg(0) has a
minimum at Hc5@22F/C# (1/3) if F,0 ~which corre-
sponds tob̂,0 or equivalently a positive disjoining pres
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sure!, and has no minimum ifF>0. Forb̂,0, the minimum
gap thickness at the origin isgm5(23/2)(FC2)(1/3).

Now that an expression for the gap thickness is obtain
we turn our attention to the calculation of the forces that
on the particle. Given our assumption of a neutrally buoy
particle and by neglecting any buoyancy due to the ther
expansion of the fluid, the particle is then subjected to o
two forces~assumed opposing!. The first one is the repelling
Van der Waals force@8#, F15Aa/6gm*

2, where the asterisk
indicates the dimensional minimum thickness, and the s
ond one is the compressing Stokes force which accounts
the presence of the interface and derived by Brenner@12#.
Given thatgm* !1, we haveF256plVa2/gm* , wherel is
the melt’s viscosity, andV is the velocity of the solid-liquid
interface. A force balance,F25F1 , then yields an expres
sion for the growth rateVT that separates pushing from e
gulfment, i.e.,VT5uAu/@36plagm* #.

Using the definitions ofH, e, the length scalel, G, b̂, and
m̂, VT is then expressed in dimensional form. For instance
the limit of vanishing disjoining pressure (b̂50), VT is
given by
pl

.

.

d,
t
t

al
y

c-
or

n

VT5uAuGF36l@DTm* 1~12m!DTp* #pa

16p~12m!lS 12~3p!1/3~a!4/3V

uAu1/3DH f
D a2/3G21

, ~16!

whereG5DTm* /h is the dimensional thermal gradient in th
melt,DTm* 5TmDTm , andDTp* 5TmDTp . Equation~16! iso-
lates the thermal conductivity effect onVT . The derivation
of a similar expression forVT , which includes the disjoining
pressure effect, is complicated by the presence of the inte
term in Eq.~15!, and is not considered here.
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