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Asymptotic analysis of particle engulfmemt
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An asymptotic analysis is conducted on the interaction between an insoluble spherical particle and an
advancing solid-liquid interface when the particle is in the near-contact régamthickness is much smaller
than the particle’s radius The analysis considers only thermal effects in a pure substance. The interface
equilibrium temperature includes the undercooling effects due to the front curvature and to the long-range
intermolecular forces in the thin melt film behind the particle. An expression for the crystal-particle gap
thickness is derived and used to calculate the threshold value for the front v&leaithiich separates pushing
from engulfment[S1063-651X99)01211-§

PACS numbe(s): 64.70.Dv, 81.30.Fb, 81.05.Ni

[. INTRODUCTION solid-liquid interface, by *, the governing equations for the
dimensional variable&enoted by *) are
It is well known that when a particle interacts with a
solidifying interface, it is either pushed or engulfed in the IT* IT* 1 9 ( . aT* 9°T*

9z*2’

@

solid. Several experimental and theoretical studies have been o -V pn = Kr_* Py

*
performed for the purpose of quantifying the pushing or en- o

ulfment phenomenopl-10. These studies have demon- .
gtrated thg existence of a critical value of the growth rateWhereT* gndK are thg te.mpe.rat.ure and the thermal diffu-
which separates pushing from engulfment. The dependencséon coefﬂmept.ln the Ilqyld. $|m|lar equations hold for the
of this critical velocity on the physical and processing pa-i€MPeraturels in the solid, with«s in place of«, and for
rameters has not been fully resolved and remains an inten-
sive area of research. We refer the reader to RB3ffor an z
extensive review of the problem.

In this Brief Report, we allow one neutrally buoyant and
insoluble spherical particle to be near enough the interface
that the gap between the planar front and the nearest point on
the sphere is much smaller than the radius of the particle. We
shall conduct a small-gap asymptotic analy{sig] for the
purpose of(i) determining the interface shape near the par-
ticle in the near-contact regidifrig. 1), whence determining
the dependence of the minimum gap on the physical param-
eters andii) using the gap to calculate the forces that act on
the particle since the calculated inner field provides the Zoom
dominant forces on the particle. These forces consist of the
viscous drag force, which opposes the movement of the par-
ticle, and the Van der Waals force which pushes the particle T
away from the interface. By balancing these two forces, we

Particle-Liquid

obtain an expression for the growth rate which separates Particle Interface
pushing from engulfment. t /)/

Liquid e
11
Il. MATHEMATICAL MODEL ~
. . . - Solid \ r
We consider the directional solidification of a pure sub- o Solid-Liquid
stance in such a way that the solidifying front is moving Interface

vertically upward with veIomFW. We assume that an |nert_ FIG. 1. Sketch of the near-contact region. Top: A spherical par-
and neutrally buoyant Sph?”c_a' partlcle is located at a d,'sficle of radiusa positioned near the solid-liquid interface. Note the
tanceh™ from the planar solid-liquid interface. The system is geformation in the latter. This situation pertains to the casel.
described by the heat conduction equations in the liquid anflottom: A magnification of the near-contact region shown in a box
solid phases and in the particle with the assumption of masg the top figure. The wavinesslightly exaggerated herén the

conservation. We consider an axisymmetric geometry with &olid front is of the order of the gap thicknessis the depth of the
moving cylindrical coordinate system which immobilizes the melt film in dimensionless form and the reference temperakytis

solid-liquid interface. With the vertical coordinate denotedmeasured at a distande from the particle-melt boundaryd& L
by z* and the radial coordinate, which is taken along the+H).
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the temperatur@} in the particle, withp in place ofx, «s, h* is the distance between the planar interface and the near-

and kp being the thermal diffusion coefficients of the solid est point on the particle, i.e., the minimum clearance between

and particle, respectively. the particle and the solid front. The particle is assumed to be
At the particle-liquid boundaryz* =h* +a—+a?—r*2 in the near-contact region so that <a. We leth*/a=eH

=B*(r*), the continuity of the temperature and of the heatwhereH=0(1). At this upper boundary, which we denote

flux yield T* =T;§ and V(kT* _ka;) .n=0, wherek and by B(r), the continuity of the heat flux and of the Fempera-

ko are the thermal conductivities of the melt and the particlefure imply V(T—uT,)-n=0 and T,=T, where x is the

respectively, n denotes the normal to the particle-melt ratio of the thermal conductivity of the particle to that of the

boundary that is pointing into the liquid aiis the gradient  liquid (+=ky/k). In dimensionless form, the temperature at

vector. Furthermore, we will alloWl? to have some pre- the interfacez=(r.t) satisfies

scribed valuely at some elevatior* =d* . If we neglect the

kinetic and hydrodynamic effects, the solid-liquid interface T=Te=1+

equilibrium temperature is given bigee Ref[8]) T*=T%

=Tt ATeunt+ ATy, WhereAT,,, is the curvature under-

cooling given by the Gibbs-Thomson formula\T.,, Wheren(r,t) is the deviation of the interface from planarity,

=[aQ/AH{]K, wherea is the crystal-melt interface energy, the subscript denotes differentiation with respect tpand

AH; is the molar entropy of fusion() denotes the molar I'=aQ/IAHT,,, B=AQ/67I3AHT,,. The parametefF

volume of the liquid phaséaken to be the same as the molar describes the influence of the front curvature ghdharac-

volume in the solid phageand K is the mean curvature of terizes the effect of the pressure put forth by the Van der

the interface. The undercooling teriT,, represents the Waals forces. Note that a positiveegativeé Hamaker con-

change in the melting temperature due to the Van der Waalstant impliesg>0 (8<0).

forces in the film separating the particle from the interface An estimation of the order of magnitude of the various

and is given by (see Ref. [8]) ATy, dimensionless parameters that appear in the equations and

=[Q/AH{][A/67g3(r*)], where A is the Hamaker con- boundary conditions is now undertaken. Following H&i.

stant andg(r*) is the gap thickness, i.e., the depth of thewe consider a typical physical situation wigh=10""° erg

film melt that is sandwiched between the particle and thdl erg=10"" J), a~50 erg/cnd, and particle radiusa

solid-liquid interface. Far away from the interface, the tem-~10"° cm. Then the characteristic length scald 4610~

perature gradient in the solid phase is maintaine@ %t cm which yields e~107%. For V~10* cm/s, «
When the particle enters the near-contact region, it in=~10"* cm?/s, andQ/AHT,~3x10"° cm’/erg, we ob-

duces pressure variations in the melt film. These pressuf@inl'~0.13, 3~1.6x10"*, andv~10"*°. Hence appropri-

changes owe their existence to the disjoining pres®yie  ate scalings for the dimensionless parametersvarezQ,

and the pressure that is associated with the front curvature gs— ¢ andI'=0(1) where the hat symbol denot€x1)

a result of the Gibbs-Thomson effefr. For a spherical  gyantities.

particle of radiusa, the pressure variation that is induced by

the front deformation, at the origin, i®st=aK=a/2a,

while the disjoining pressure is given byPpp=

— Al67g3(r*). Following Ref.[8], we let| be the charac- In this section we conduct an asymptotic analysis in the

teristic length scale over which the disjoining pressixg  vicinity of the origin. For this purpose, we introduce the

in the film balances the pressure due to the Gibbs-Thomsostretched coordinate= \/eR, a scaling that is suggested by

effect Pgr, i.e, | A|/6713= al2a, from which it follows that  the dimensionless location of the melt-particle boundary, i.e.,

|=[a| A|/3ma]*>. ez=eH+1—1-r2 The following system of equations
In the nondimensionalization of the equations and boundand boundary conditions results:

ary conditions, we uskas lengthscale in the vertical direc-

tion and the radius of the particke as a lengthscale in the JT  ,.dT

horizontal direction)?/k as a scale for time and the fusion gt €V

temperature of the pure substaricg as a scale of tempera-

ture. The following equations in dimensionless form are ob

ﬁ_’_ Nrr
r 14ée2y?
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‘with similar equations in the solid phase and the particle. The

tained upper boundary is now given by
oT  oT 19/ aT\ &°T R> R*
——v—=q| = —|r—|+—]|, (2 z=H+—=+e—=+---=B(R) 5
ot 0z ror\ ar) pz2 2 8 '

whereq=1 in the liquid phaseq= s/« in the solid phase, On z=B(R), the continuity of temperature and of the heat
and q=«kp/k In the particle, and wheree=I/a and v flux yields
=IV/k.

The corresponding boundary conditions in dimensionless dT B JT
form are discussed in the following. Since we are focusing 57 €sR oR M
on the liquid region that is sandwiched between the particle
and the solid-liquid interface, the upper boundary for theThe temperature in the solid and liquid phases at the inter-
liquid region is given byez=(h*/a)+1—\1-r?, where facez=n(R,t) is given by

aT, BT,

9z S9R R

and T=T,. (6)
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- TRR . calcul_ations. AtQ(e) of EqQ. (9 we obtain an evolution
T=Tg=1+ —+ +eBg°(R). equation for the interface perturbatiof{R,t), namely,
\/1+ ené R 1+ ené
7) dn AT nr|] ~AT R?
AR K W?(H“”?)

We solve the steady-state version of the above problem by
perturbation techniques usingas the perturbation param- R
eter. In order to keep the interface planar in the basic solu- +B
tion, we let the thermal conductance ratiodeviate slightly

from 1. Recal_l thatu>1 corresponds to a particle that is | \ve make the change of variable=R\AT/Td, then the
more conducting than the melt while<1 corresponds to a steady state solution of ELO) that is bounded at=0 and

particle that is more insulating than the melt. Hence, we letiisfies the symmetry condition et 0, i.e.,d7/dx(0)=0
w=1+en wherep is anO(1) quantity that could be either g given by
positive or negative. This is done simply for the sake of

R2 -3
Ht —

5 (10

simplifying the algebra. Fo—1=0(1), one has tcon- . 2rd]  wpAT 5
sider a perturbation about a nonplanar interface. Let n(X)=pu|H—d+ AT + oT4q X
[T,Ts,Tp,21=[?,?s,?p,01+e[e,os,ep,n]+0<ez>.8 Bd f yKo(Y) 1 (x)dy
+_
® AT| Jx [H+(Td/2AT)y?]®

Then theO(1) problem €=0) pe_rtains to the case of a
planar interface and is described Byz) = (AT/d)z+1, for [ ylo(y)Ko(x)dy
0<z=H+R%2, T,=(AT/d)(z—d)+To, for H+R%/2<z o[H+(Id/2AT)y?]?

=<d, and Ts=Ggz+1, for z<0, whereAT=To—1. Here  ynerel,(x) andKy(x) are the modified Bessel functions of
AT/d is simply the temperature gradient across a layer congrder zero of the first and second kind, respectively. Equa-
sisting of the liquid film and a portion of the particle. The tjon (11) implies that

particle’'s presence does not affect the temperature profiles
for two reasons(i) at leading order the thermal conductivi- A 2rd] Bd (= yKo(y)dy

ties of the melt and particle are equal so that the heat flow 77(0)=,u[H—d+ ﬁ}"‘ f 53"
does not distinguish between melt and particle @ndthe 0 [H+(I'd/2AT)y?]
effect of the disjoining pressure does not appedd{t) but (12)
enters at the next order in the calculations, i@(g). Be-
cause the effect of the presence of the particle is not felt
the leading order of the calculations, the temperature profile
are all linear in the vertical coordinate. The ratio of the tem-
perature differencT over the depthd can be written as
AT/d=(AT,+AT)/(L+H), whereH is the depth of the
melt layer under the particlé,=d—H, AT, andAT, are I'd

the dimensionless temperature changes over the depths g(x)=H+ mXZJFE
andL, respectively(see Fig. 1 In addition, theO(1) con-

tribution to the continuity of the heat flux at the particle-melt gj|ows the calculations of the forces acting on the particle. In
interface impliesAT,/L=ATy/H, which when combined thjs report, we consider the simple case of using the gap
with the previous relation, yields an expression for the pathickness at the origin to calculate the force balance on the
rameterd, namely,d=H[1+AT,/AT;]. Next we proceed particle. Thus, we are in fact ignoring the interface distor-
with the solutions to th@(e) contributions foré, s, and  tions. The inclusion of the latter will require the integration
fp. These expressions are not displayed in this report. Thef Eq.(11) and is beyond the scope of this Brief Report. The
heat energy balance at the solid-liquid interface implies  gap thickness at the origin is given lg(0)=H — e7(0),
which, upon using Eq(12) and the definition ofd, can be

: (11)

AT

which, with the conditiord »/dx(0)=0, provides the initial

onditions that are needed to alternatively solve the steady
Version of Eq.(10) for 5(x) numerically. These calculations
are beyond the scope of this report. The knowledge of the
gap thickness, namely,

AT

l“d)zx4
. (13

8 7(X)

V[KT—TIn=L| V+ I (9  written asg(0)=VH—®/H?, where
ot |’
] AT,\[ 2T
whereK =kg/k denotes the ratio of the thermal conductivity W=l-ep| 1=\ 1+ || 1= 5] | (9
m

of the solid phaseks) to that of the liquid phasek], L is

the nondimensional latent heat of fusiaghs AH«/kT,, and P K~(v)d

Vis the dimensionless growth rate. The leading order term of o= B yKo(y)dy ]
the latter is calculated from Eq9) to getV=KGg—AT/d ATmJo [1+(T/2AT Y2
=KGg— AT, /H. This expression for the dimensionless o ) o
growth velocity is similar to the one corresponding to the The minimum gap thickness at the origin is calculated by

directional solidification of a pure substance without particleminimizing g(0) with respect(ltg)—L_We find thatg(0) has a
with AT,,/H being the thermal gradient in the melt. The MiNimum at He=[—2®/V] if ®<0 (which corre-
effect of the particle does not appear at this order of thesponds toB<<0 or equivalently a positive disjoining pres-

(15
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sure, and has no minimum =0. ForB<0, the minimum

gap thickness at the origin &,=(—3/2)(®W¥?)*/3), Vr=[A|G
Now that an expression for the gap thickness is obtained,

we turn our attention to the calculation of the forces that act

on the particle. Given our assumption of a neutrally buoyant +6m(1l—pu)X

particle and by neglecting any buoyancy due to the thermal

expansion of the fluid, the particle is then subjected to only

two forces(assumed opposingThe ﬁiszt one is the repelli.ng whereG= ATy /h is the dimensional thermal gradient in the

Van der Waals forc€8], F, =.4a/6g;,”, where the asterisk melt, AT* =Ty AT, andAT; —T.AT,. Equation(16) iso-

indicates the dimensional minimum thickness, and the S€Gates the thermal conductivity effect o . The derivation
ond one is the compressing Stokes force which accounts fo(;f a similar expression fov';, which includes the disjoining

th_e presencs of the interface and den;/ e(i by Brelﬁmé_}. pressure effect, is complicated by the presence of the integral
Given thatg,,<1, we haveF_=6mAVa'lgp, whereh is oy Eq (15, and is not considered here.

the melt’s viscosity, and/ is the velocity of the solid-liquid
interface. A force balancdé;s _=F ,, then yields an expres-
sion for the growth rat&/; that separates pushing from en- ACKNOWLEDGMENTS
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